
Unified Behavior Framework

in an Embedded Robot Controller

THESIS

Stephen S. Lin, Captain, USAF

AFIT/GCE/ENG/09-04

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-04

Unified Behavior Framework

in an Embedded Robot Controller

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Stephen S. Lin, B.S.E.E.

Captain, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG /09-04

UNIFIED BEHAVIOR FRAMEWORK

IN AN EMBEDDED ROBOT CONTROLLER

Stephen S. Lin, B.S.E.E.

Captain, USAF

Approved:

~--2-.-.. =......,..-."
4--,~.-r~

J1 Ai A.p.", (j,2 9
Dr. Gilbert Peterson, PhD (Chairman) date

17 k11ff{ 01
ember) date

i3 Jv\~ 17 mar ()~
Dr~y Mullins, PhD (Member) date

AFIT/GCE/ENG/09-04

Abstract

Robots of varying autonomy have been used to take the place of humans in

dangerous tasks. While robots are considered more expendable than human beings,

they are complex to develop and expensive to replace if lost. Recent technological

advances produce small, inexpensive hardware platforms that are powerful enough to

match robots from just a few years ago. There are many types of autonomous control

architecture that can be used to control these hardware platforms. One in particular,

the Unified Behavior Framework, is a flexible, responsive control architecture that

is designed to simplify the control system’s design process through behavior module

reuse, and provides a means to speed software development. However, it has not

been applied on embedded systems in robots. This thesis presents a development

of the Unified Behavior Framework on the Mini-WHEGSTM , a biologically inspired,

embedded robotic platform. The Mini-WHEGSTM is a small robot that utilize wheel-

legs to emulate cockroach walking patterns. Wheel-legs combine wheels and legs

for high mobility without the complex control system required for legs. A color

camera and a rotary encoder completes the robot, enabling the Mini-WHEGSTM to

identify color objects and track its position. A hardware abstraction layer designed

for the Mini-WHEGSTM in this configuration decouples the control system from the

hardware and provide the interface between the software and the hardware. The result

is a highly mobile embedded robot system capable of exchanging behavior modules

with much larger robots while requiring little or no change to the modules.

iv

Acknowledgements

To my adviser who pushed me to get things done.

To my fellow students with whom I shared the journey.

And to my wife without whom I’m completely helpless.

Stephen S. Lin

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . ix

List of Abbreviations . x

I. Introduction . 1
1.1 Research Goal . 2
1.2 Sponsor . 2

1.3 Assumptions . 3

1.4 Thesis Organization . 3

II. Autonomous Architectures and Robots Background 4

2.1 Sense-Plan-Act Paradigm 4

2.2 Reactive Paradigm . 6

2.2.1 Subsumption 6

2.2.2 Potential Field 7
2.2.3 Unified Behavior Framework 8

2.3 Message Based . 9

2.4 Hybrid . 10

2.4.1 Three-Layered Architecture 10

2.4.2 Saphira . 10

2.5 Probabilistic Paradigm 11

2.6 Tradeoffs Between Architectures 12
2.7 Biologically-Inspired Robots 14

2.7.1 WHEGSTM . 14
2.7.2 Mini-WHEGSTM 16
2.7.3 RHex . 17
2.7.4 Hexapod with IsoPod 19

2.7.5 Climbing Microrobot 21

2.7.6 Kaa . 23
2.8 Overview of the Autonomy of the Biologically-Inspired

Robots . 24
2.9 Summary . 25

vi

Page

III. Design . 27

3.1 Overview of the Design 27

3.2 Hardware Specifications 28

3.2.1 Microprocessor 28

3.2.2 Motor . 29
3.2.3 Encoder . 30
3.2.4 Camera . 31
3.2.5 IR Range Finder 31

3.2.6 Wireless Device Server 31
3.3 Software Platform . 32

3.3.1 Operating System 32

3.3.2 Simple GPTimer Driver 34

3.3.3 GPIO and Encoder Driver 34
3.3.4 Camera Driver 35
3.3.5 I2C driver . 35
3.3.6 Wireless Communications 36

3.4 UBF on Blackfin . 36
3.4.1 User Level Hardware Driver 36
3.4.2 Seek the Big Pink Ball 39

3.4.3 PriorityMerge 40

3.4.4 Customized State and Action 41
3.5 Summary . 41

IV. Results . 42
4.1 Hardware Development Results 42

4.1.1 PWM motor control 42
4.1.2 Rotary Encoder 43

4.1.3 Camera . 43
4.1.4 IR Range Finder 45

4.1.5 Summary of Hardware Development Results . . 46

4.2 UBF in Action . 46
4.2.1 Starting with the Ball in Sight 46

4.2.2 Starting with no Ball in Sight 47

4.2.3 Keep Away . 48

4.2.4 Dance with the Ball 48
4.2.5 Summary of Behavior Tests 49

4.3 Summary . 50

V. Conclusions . 51
5.1 Research Conclusions . 51
5.2 Future Work . 52
5.3 Final Remarks . 53

vii

Page

Bibliography . 54

viii

List of Figures
Figure Page

2.1. Sense-Plan-Act and Reactive Behavior Paradigms 5

2.2. Three-Layered Architecture . 11

2.3. WHEGSTM II Rearing Half of Its Body 15

2.4. A Mini-WHEGSTM Robot . 16

2.5. RHex Experimental Platform 18

2.6. Hexapod III Kit Constructed and Wired 19

2.7. Climbing Microrobot . 21

2.8. Kaa Robot Gripping Two Pipes 24

3.1. System Block Diagram . 29

3.2. Component Wiring and Connection Diagram 30

3.3. A and B Data Channels of the Rotary Encoder 31

3.4. Relationship Between the Software Drivers and the Rest of the

System . 32

3.5. Relationship Between the UBF and the Hardware Components 37

3.6. Visual Representation of the seekcolor Algorithm 38

3.7. Diagram of the Ball Seeking Behavior 39

4.1. Mini-WHEGSTM Sees the Pink Ball at 360cm 44

4.2. Mini-WHEGSTM Sees the Pink Ball at 60cm 47

4.3. Mini-WHEGSTM Sees the Pink Ball at 30cm 49

ix

List of Abbreviations
Abbreviation Page

INSeCT Intelligent Navigation, Sensing, and Cooperative Tasking . 2

SPA Sense-Plan-Act . 4

UBF Unified Behavior Framework 8

OOP Object Oriented Programming 8

LPS Local Perceptual Space 10

PRS Procedural Reasoning System 10

MDP Markov Decision Process 12

POMDP Partially Observable Markov Decision Process 12

GPS Global Positioning System 15

PID Proportional-Integral-Derivative 15

GRF Ground Reaction Forces 17

FSM Finite State Machine . 20

DOF Degrees of Freedom . 21

TWI Two-Wire Interface . 29

PWM Pulse-Width Modulation 29

GPIO General Purpose IO . 30

PPI Parallel Peripheral Interface 31

MMU Memory Management Unit 33

HAL Hardware Abstraction Layer 36

x

Unified Behavior Framework

in an Embedded Robot Controller

I. Introduction

Robots have been used to take on dangerous tasks for many years under the

direct control of human operators. Where teleoperation is impractical, autonomous

control systems carry on while having limited contact with the operators. The dan-

gerous or remote nature of the tasks also require the autonomous robots to be robust

enough to survive the accomplishment of the tasks. Yet these requirements often

drive development cost to such levels that few robots can be acquired and that the

most dangerous of tasks must be abandoned to ensure the robot’s survival. Another

issue is the size of robust, autonomous robots which limit the operating environment

to large, open spaces.

Recent technological advances allow autonomous control systems to operate on

small, inexpensive hardware platforms. Besides opening a new realm of tasks for

autonomous robots that human operators have difficulty accomplishing, inexpensive

robots are far more expendable. Groups of less robust, yet expendable, robots can

deploy to accomplish the sort of task that the previous generation of high-cost robots

are not risked to perform. Being smaller, they can also operate in confined spaces

where even human operators cannot reach.

The keys to creating small, inexpensive, autonomous robots is the control sys-

tem that makes it autonomous and operability in its target environment. This control

system must be responsive to be useful in a real environment, flexible enough to per-

form different tasks when required, and be usable on the variety of possible specialized

hardware platforms to keep the development cost low. And since the target environ-

ments are small, enclosed spaces with uneven surfaces, the physical form of the robot

cannot simply be a scaled down version of the large robots that can only operate on

1

level ground. The combination of these requirements drive the development of a new

embedded, autonomous robot, and mark the beginning of a new generation of highly

mobile, low cost, autonomous systems.

1.1 Research Goal

The most intuitive development path for a small robot that operates in small,

enclosed spaces, is to model the robot after creatures normally found there. For a

responsive, highly mobile robot, insects are the ideal model. The first objective of

this research is to develop the embedded robot controller mounted in a small robot

as a viable, flexible hardware platform for a general purpose autonomous robot. This

research adapts the proven Unified Behavior Framework (UBF) [25] to the limited

resources of an embedded controller. The Unified Behavior Framework brings the

benefit of simplifying development, code reuse, scalability, and choice of behavior

system for the robot. There have been other autonomous embedded controller robots

but none whose control architecture exhibits such properties. Second, the specific

robotic platform to be used, the Mini-WHEGSTM [15], has never been made fully

autonomous. This platform utilizes the unique properties of wheels and legs to cross

rough terrain. While wheels are very simple to use in locomotion, they only perform

well on flat, open areas. Its opposite, the leg, is able to traverse uneven terrain just as

well as flat, level ground, but require a complex control system for each leg that may

dominate the computational resources of an embedded processor. The combination

of the Unified Behavior Framework and a legged hardware platform makes a insectoid

creature that can be programmed to perform a wide variety of tasks.

1.2 Sponsor

This research is sponsored by the Intelligent Navigation, Sensing, and Coop-

erative Tasking (INSeCT) for the Air Force Office of Scientific Research (AFOSR).

INSeCT is located at the Precision Navigation and Time division of the Air Force

Research Laboratories (AFRL/RYR) at Wright-Patterson Air Force Base. INSeCT

requires small, autonomous robots for operations in confined spaces and as low cost

2

fleets. The work presented in this thesis provides a solution that is compatible with

continuing work on larger robots and paves the way to cooperative development be-

tween the embedded and larger robots.

1.3 Assumptions

Although the techniques and methods presented in this thesis apply to any

object oriented language, C/C++ is natively supported by the embedded Linux op-

erating system and is the language of choice. The Unified Behavior Framework used in

this research is a non-real-time version of the original development [25] and is written

in C/C++. Basic knowledge of C/C++ and objected oriented concepts are assumed

when discussing the UBF.

1.4 Thesis Organization

This thesis is divided into five chapters. This chapter introduces the problem

and the goals of the research. Chapter II presents an overview of several types of

autonomous control architectures and discuss the advantages and disadvantages of

each compared to the Unified Behavior Framework. Chapter II also presents a number

of embedded and biologically-inspired robots, highlighting the advantageous qualities

of WHEGSTM locomotion. Chapter III outlines the development of the robot, from

the individual hardware components to the extensions of UBF which adapt it to

the embedded platform. This is followed by the results of developing the hardware

platform and the operation of UBF executing a demonstration behavior on the Mini-

WHEGSTM . Finally, Chapter V summarizes the lessons learned, discusses areas for

future research encountered during the development process are discussed.

3

II. Autonomous Architectures and Robots Background

Just as numerous inventors of the past look to birds to find inspiration for flying

machines, robot designers look to nature for existing forms that perform the

functions they require. When the goal is for a machine to take the place of a human

in a dangerous situation, designers copied all parts of the human required to do

the job. For scurrying about confined spaces, exploring and searching for targets of

interest with possibly the additional goal of remaining undetected, the insect is the

inspiration of choice. Although other biological organisms also exhibit the required

characteristics, insects combine flexible locomotion and simpler mechanical form.

This chapter presents an overview of several types of robot control architec-

tures and a spectrum of small, autonomous robot projects as well as developments

in embedded solutions suitable for small, autonomous robots. This chapter intro-

duces recent architectures, comparing them to reactive behavioral architectures, in

particular, the Unified Behavioral Framework. These are followed by an examina-

tion of several biologically-inspired robots, and autonomy that has been added to

these platforms, with emphasis on the Mini-WHEGSTM which is derived from the

cockroach.

2.1 Sense-Plan-Act Paradigm

The Sense-Plan-Act (SPA) architecture is similar to building a computer pro-

gram [10]. A human programmer collects specifications, writes, and executes the

program. Similarly, the SPA architecture divides the task into three functional units:

Sense gathers information about the environment, Plan devises a set of actions, Act

executes the actions. Figure 2.1a shows a graphical representation of the architecture.

The most time consuming and complex component of the SPA architecture is

the maintenance of the internal state that represents the sensed world [25]. The next

two steps of SPA depend on this internal state exclusively so it must be as accurate

as possible. Also, because these two steps depend on the internal world model, the

sensing step must be completed before the planning step can begin. In the planning

4

(a) (b)

Figure 2.1: (a) Sense-Plan-Act Paradigm. (b) Reactive Behavior Paradigm.

step, the complete plan of action is formulated to reach the goals. Using the complete

internal representation of the world, the planning state plots each intermediate step

required to reach the goal state from the current state. Finally, the plan is carried out

in the final stage which interfaces directly with the physical hardware on the robot.

After each action, the sensing state activates again to update the internal world model

and restart the Sense-Plan-Act cycle.

The SPA architecture was first demonstrated in Shakey the Robot [17]. How-

ever, it also shows a serious limitation of SPA. Planning and world modeling are

computationally very intensive. The result is that in the sensing stage when the in-

ternal world model is being constructed, there is no plan ready for execution and thus

no action to express. After the the sensing state completes and while the planning

stage is active, the robot is unresponsive to the changing environment. The result is

that the robot is incapable of dealing with highly dynamic environments

Other concerns to note are the open and closed world assumption and the frame

problem [16]. Using the closed world assumption means the internal world model

contains everything the robot needs to know about its environment. The model

must contain all conceivable details about the robot’s operating environment but

it is also very easy to miss details. Robots programmed to operate on the closed

world assumption can fail if it encounters anything unexpected in its environment.

With the open world assumption, the system is designed to be flexible enough to

handle such unexpected events. The frame problem is the attempt to limit the size

5

of the robot’s local environment so the resulting world model is workable. Instead

of wasting computation time on objects and events that will not affect the robot

in the immediate future, concentrating on the local environment greatly reduces the

computational requirements of forming the world model. However, the required size

of the local environment also depend on the goals of the robot and the nature of the

environment.

2.2 Reactive Paradigm

In the early 1980’s, two very similar responses to the issues in SPA appeared from

Braitenberg [5] and Brooks [6]. Braitenberg presented a series of biologically-based

thought vehicles that were configurations of sensors, motors, and interconnections

that give behavioral responses to stimuli. By combining very simple mechanisms in

such a way that relatively complex behavior is produced, he avoids over-designing

a behavior to reach the same level of complexity. On the other hand, the resulting

behavior of any single configuration is very difficult to predict since that behavior

directly linked to environmental stimuli.

From the same start point of behaviors that emulate simple organisms, Brooks

explores a robot architecture built using simple behaviors that operate purely on

sensing and acting. Other designs follow the same theme: minimize the use of a time

consuming internal state to minimize the delay between sensing and acting. This type

of design, diagrammed in Figure 2.1b for comparison with SPA, is call the Reactive

Paradigm.

2.2.1 Subsumption. Brooks’ subsumption architecture [6] decompose the

functional units vertically, focusing on the resulting external behavior. In SPA the

functional units are decomposed horizontally, which leads to a time-consuming chain

of modules that must execute in sequence. The vertical decomposition of subsumption

creates levels of competence, which are classes of behavior for the robot over all

environments. A higher level of competence is a more capable behavior. In this

6

way, each layer is one complete, functional, control system where the more traditional

function units of SPA cannot work independently of each other. Also, a level of

competence subsumes the levels below it to produce the final behavior. This system

also allow the multiple layers to work toward different goals. The issue of integrating

multiple sensors to generate a state transforms into an issue of integrating multiple

behaviors resulting from those sensor inputs. Since the lower levels are functional at

a level of competence, if the more “abstract” higher behavior has trouble producing

a result, a sensible behavior is still produced, making this a robust system that is

responsive to a changing environment. Finally, additional sensors/behaviors can easily

be added. Each layer executes independently of all the other layers so to add a sensor

or to add a layer of competence to a system with a fully utilized processor is possible

by simply running the new layer on an additional processor. The required amount

of communications between layers is low so the complexity in coordinating multiple

processor is minimized.

2.2.2 Potential Field. Another type of reactive architecture generates po-

tential fields to guide the robot. Potential fields consists of vectors that point away

from obstacles or toward a goal. If fully generated, this is a complete plan from any

point in the robot’s environment to the goal.

Arkin’s motor schema [3] approach makes use of potential fields in place of

layers of behavior modules that subsume each other. These motor schemas take

sensory inputs to produce a motor command. All commands to the same motor are

summed and normalized to produce the final motor command. Only the vector at the

current location is generated. This system produces the vector for the point on the

potential field the robot occupies to eliminate the need to have knowledge of anything

other then what the sensors are detecting at the moment. If the robot is initialized at

random locations and the motor command vectors are recorded, a complete potential

field forms.

7

Payton adds internal state and a certain amount of planning back to the basic

reactive architecture [19]. All knowledge and constraints relevant to the goal forms an

internalized plan which is pre-generated, stored, and updated as needed to account

for changes in the environment. This internalized plan consists of a gradient field that

is similar to a potential field. Payton utilizes the gradient field as an additional input

to a subsumption architecture so it remains responsive to a dynamic environment but

retain the ability to have a centralized goal and storage past experiences.

2.2.3 Unified Behavior Framework. Most reactive control systems are de-

signed and customized for each use. This leaves the robot tied to the strengths and

weaknesses of the reactive architecture that its control system is based on. The be-

havior modules within the control system are also tied to each other, the controller

that binds them together, and the underlying hardware. This makes behavior mod-

ule reuse difficult and necessitates a new reactive control system for each platform.

The Unified Behavior Framework (UBF) [25] is a reactive architecture designed to

overcome the shortcomings of such specially constructed reactive control systems to

create a readily reusable reactive architecture.

The UBF uses object oriented programming (OOP) concepts to create a generic

framework to integrate behavior modules. The main issues with monolithic control

systems are that they are tied to the platform and that their components are tied to

each other. A generic state object provides a generic interface to sensor data and other

state information from the platform and a generic action object provides a generic

interface to the motors and any other actions the platform is capable of. These two

objects provide the common interface for behavior modules to be reusable in any UBF

based control system. Each behavior module is derived from a generic behavior object

that specifies the generation of an action object. This allows the reactive controller

to select behaviors at runtime without needing to customize the behavior module to

the controller. The result of encapsulating these components of a control system is

8

an architecture that encourages reuse of behavior modules that are usable on any

platform.

There is also a construct that encapsulate multiple behaviors that derives from

the behavior object. The composite object is a set of behavior modules with a run-

time selectable arbiter object to reduce the set of action objects to one action. This

allows complex behaviors to be built out of simpler, independently developed behav-

iors. Since each composite behavior can be used in the place of any ordinary behavior

object, any arbitrary hierarchy of composite objects and behaviors modules are pos-

sible, allowing any reactive architecture to be built and included within or alongside

of each other.

2.3 Message Based

A property that is not often considered is the extendability of the architecture,

both in hardware and in software. OpenR [9], developed to control entertainment-

oriented robots, focuses on the interfaces between components and linkages between

components. Using OpenR objects and a system of inter-object communications [4],

the architecture allows plug-and-play capabilities for hardware and software compo-

nents. These OpenR objects each execute in parallel and pass messages to each other

to “see” through the sensor objects and act through motor control objects. Network

and hierarchies of interconnected objects allow higher level behaviors. A limitation

is the dependence on message passing bandwidth. Large numbers of objects or just

several camera objects that need to pass large amounts of data to other objects for

processing can overwhelm the internal communications bandwidth. A greater prob-

lem stems from behaviors that are linear combinations of component behaviors. Each

component cannot start processing until the previous component in the chain com-

pletes processing and pass along the required data and the combined behavior cannot

be produced until the final component of the chain completes processing. The latency

of the chained behavior may be too long for the robot to be responsive.

9

2.4 Hybrid

While SPA architectures are too slow to respond to changing environments,

reactive architectures sacrifice long term planning and goal-seeking for responsive-

ness. Hybrid architectures seek to combine the best features of both paradigms by

including a planning module that does not interfere with the reactive elements of the

architecture.

2.4.1 Three-Layered Architecture. Gat’s three-layer architecture [10] is a

variant of the hybrid architecture that adds a module, the sequencer, between the

slow, deliberative planner and the fast, reactive controller. This is diagrammed in

Figure 2.2. The controller is tightly coupled to the sensors and actuators and responds

immediately to any stimuli. It contains a library of primitive behaviors that require

little or no need for state information to keep it responsive to the real world instead

of the last state update. The sequencer then activates primitive behaviors as needed

to carry out a plan. The sequencer also responds to any unexpected situation it may

encounter while the plan is being carried out. Another constraint on the sequencer

is time. Whatever algorithm is implemented as part of the sequencer cannot take a

long time relative to the rate of environmental change. This generally means search

algorithms and certain vision processing must be completed at the deliberator level.

The deliberator is the least constrained layer but it is probably also the least invoke

layer since all the time consuming algorithms end up there. The deliberator can be

called upon to generate a plan or to respond to requests from the sequencer. These

three layers are easily separable from each other, allow very different implementations

in each layer, and make unambiguous divisions.

2.4.2 Saphira. The Saphira architecture [12] is centered around the internal

Local Perceptual Space (LPS) and a version of the Procedural Reasoning System

(PRS). It is comparable to the three-layered architecture with the LPS and PRS

in the sequencing level which can query the planner for path planning and control

the set of basic behaviors in the reactive layer. The goal of the architecture is to

10

Figure 2.2: Three-Layered Architecture.

create an autonomous robotic agent which involves the concepts of coordination of

behavior, coherence of modeling, and communication with other agents. Coordination

of behavior means the various basic behaviors must work together in such a way that

the goal is accomplished. Coherence of modeling refers to the LPS which must stay up

to date to the real world around the robot and most importantly, be an appropriate

representation of the environment for the required tasks. Communication is also very

important for an autonomous robot since it is rare if ever that such a robot works

alone without the need to interact and coordinate actions with another robot or a

human.

2.5 Probabilistic Paradigm

Probabilistic models [23] may also be used to control robots instead of behavior

based architectures. Designers commonly assume that the physical effects of the

control system is deterministic. In actuality, the physical actions of the robot are never

ideal and the environment is unpredictable. Such a probabilistic robot incorporates

11

the uncertainties inherent in sensor inputs and physical actions to produce a more

robust control system.

Thrun develops a control system using Markov decision processes (MDP), and

partially observable Markov decision process (POMDP). Value iteration is used to

find the optimal control policy, which uses a payoff function to find the utility of each

available control action. MDP control model is developed first since it’s simpler to

assume the environment is fully observable. In this case, the fully observed state maps

to control actions. The control policy maps the best action to the current state that

also results from the most likely past states. The policy takes the form of a Bellman

equation and all value functions that allow the equation to be solved produce an

optimal policy. Replacing an MDP with a POMDP, the fully observable assumption

is abandoned for the more realistic partially observable state. The optimal control

policy developed using the fully observable assumption only needs a small change

to fit a POMDP. The state is simply replaced by a belief, which is a probability

distribution over the possible states. The resulting POMDP system is still guaranteed

to be optimal.

Probabilistic control systems take into account uncertainty in observation as well

as action to produce optimal control actions though the price is high computational

requirements. POMDPs are PSPACE-hard problems [21] for finding approximately

optimal policies. The only way for POMDPs to act as practical control systems is

through approximations and optimizations. For example, the belief space is the large

incalculable set of beliefs that is at the center of the computational problem. If the

belief space is reduced to only the relevant portions, the remaining beliefs may be

computable. This optimization risks the optimality of the control policy to reduce

computational requirements.

2.6 Tradeoffs Between Architectures

The SPA and the reactive behavior based architectures described above each

have their advantages and drawbacks. SPA is capable of forming a plan to reach its

12

goal but is unresponsive while it is planning. A purely behavioral architecture such as

Brook’s subsumption architecture respond to changing environments immediately but

has no plans or goals other than those found in each individual behavior. Developing

a SPA architecture to accomplishing a goal is as simple as giving it the goal and

enough time for it to form a plan, but developing a subsumption architecture require

trial and error to find the combination of behaviors that accomplish the goal.

Message based architectures are similar to behavior based architectures, con-

sisting of behavior and hardware modules that interact to produce the final behavior.

The goal of behavior based architectures is low latency between sensing and acting

while message based architectures emphasize extendability. Ideally, message based

responds just as fast as behavior based, but it could also be as slow as SPA.

A probabilistic architecture has the advantage of producing the optimal action

for each situation. Unlike behavior based architectures, it takes into account the

uncertainties of the sensor inputs as well as the actual physical actions. Unfortunately,

it also require significant computational resources similar to the planning stage of SPA.

Hybrid architectures take the best qualities of SPA and behavior based architec-

tures to respond quickly and retain the ability to build a plan to reach the goal. The

lower levels of the hybrid architecture interface closely with the underlying hardware

for responsiveness and act as the reactive behavior based architecture. The plan-

ner/deliberator relies on these lower level behaviors to keep the robot out of trouble

while the world model updates and the high level plan forms. Naturally, this also

require more computational resources than a purely behavioral system.

UBF can take the form of any reactive architecture and be composed of message

based and probabilistic components and is a natural fit for the reactive control layer of

hybrid architectures. The flexibility of the UBF also promotes reusability of behavior

modules and reusability on multiple platforms.

13

2.7 Biologically-Inspired Robots

In the design of small robots, the inspiration for their form often comes from

small creatures, such as insects and worms. The natural habitat of these small crea-

tures are tight, enclosed spaces with uneven surfaces, an environment larger robots

find difficult. Imitating a mechanical form known to be natural to that environment

shortens development time and creates an intuitive path for improving the design by

accurately mimicking the most beneficial part of the form.

2.7.1 WHEGSTM . The WHEGSTM [24] is a series of robots sharing a

number of characteristics derived from the cockroach. In particular, the arrangement

of legs that give it the tripod gait of a cockroach. To simplify the mechanical design

and the control requirements of an articulating leg, the WHEGSTM uses wheel-legs

that take the best features of wheels and legs. Wheels are highly mobile on smooth,

hard surfaces. However, wheels have difficulty with obstacles on the order of the radius

of the wheel or greater. Fully-legged locomotion is better able to traverse difficult

terrain but involve complex arrangements of servos and controls. The combination of

wheels and legs take the form of several spoke “legs” on each wheel to handle rough

terrain without additional servos.

Each WHEGSTM [24] robot includes three pairs of wheel-legs mounted on

three axles. Shown in Figure 2.3, each wheel-leg consists of three spoke “legs” set

120 degrees apart. Each wheel-leg is set 60 degrees out of phase from the neighboring

wheel-leg and are able to flex out of their original phase to adapt to irregular terrain.

One motor drives all three axles, minimizing the weight requirements and control

complexity. This design also allow the WHEGSTM to climb over obstacles 1.5 times

the leg length by flexing the axle pairs into phase to maximize the torque on the

climbing wheel-legs. The arrangement and phase offsets of the three pairs of wheel-

legs emulate the motion of the six legs of a cockroach. Following the cockroach’s

example, the wheel-legs swinging over the body of the WHEGSTM allow it to climb

14

Figure 2.3: WHEGSTM II Rearing Half of Its Body [11].

small obstacles without breaking gait. For turning, the front and rear wheel-legs pivot

in opposite directions to minimize the turn radius.

The first of the WHEGSTM [24] series only include the basic features common

to the entire series and did not bend its body like a cockroach. From WHEGSTM

II on, the series include a body joint at the middle axle. This addition allow the

robot to bend the forward torso upward to reach the top of higher obstacles, demon-

strated in Figure 2.3, and downward to maintain traction and balance while cresting

the obstacle [11]. The WHEGSTM IV, designed to operate near and in the water,

is more rugged and is fully enclosed to be water proof and dirt proof. The robot’s

onboard equipment includes a global positioning system (GPS) receiver, a compass

for localization, a sonar for collision avoidance, and a modem communicate with the

human operators. The objective of the WHEGSTM IV is for the operator to select

a number of waypoints on a map which is then sent to the WHEGSTM through the

modem. The onboard control software, running on a microcontroller, drives the robot

on the route designated by the sequence of waypoints with a proportional-integral-

derivative (PID) controller generating the motor control signals. Different versions of

the WHEGSTM robot use different microcontrollers as its onboard processor. The

WHEGSTM IV uses a BL2000 microcontroller to execute a PID control algorithm

15

Figure 2.4: A Mini-WHEGSTM Robot.

while the WHEGSTM II uses an Acroname BrainStem [13] for its subsumption ar-

chitecture controller.

2.7.2 Mini-WHEGSTM . Despite being a simple robot mechanically de-

signed to emulate a cockroach, the WHEGSTM is still a relatively large robot at 20

inches long and weighing on the order of 10 to 20 lbs [24]. The much smaller Mini-

WHEGSTM robots are designed for reduced size and improved mobility. This series

of robots weigh on the order of 100 to 200 grams and are less than 4 inches long [15].

Figure 2.4 shows an example of a Mini-WHEGSTM .

The Mini-WHEGSTM [15] is also a series of robots sharing the wheel-leg con-

cept of their larger cousins. The smaller Mini-WHEGSTM included only two pairs of

wheel-legs, of which one pair pivots to steer. One motor drives all the wheel-legs like

the larger WHEGSTM [24] but only one steering servo is required as opposed to the

two steering servos in the WHEGSTM . The Mini-WHEGSTM also uses torsional

compliant mechanisms, which allow the wheel-legs to twist relative to their axles, and

16

adapt to the terrain they’re moving over. A common problem the design encountered

is difficulty with certain types of terrain [15]. With versions of wheel-legs that consist

of spokes with no footpads, the wheel-legs can penetrate and catch on some surfaces

and occasionally fling the robot in to the air. On hard or polished surfaces, the hard

wheel-legs have little traction unless the feet are coated in rubber to compensate.

The primary goal of developing the Mini-WHEGSTM [15] from the larger

WHEGSTM [24] is to create a low cost robot that can be expendable and can reach

places larger robots cannot reach. However, the development of such small robots

does not focus on autonomy. Other than remote control by a human operator, most

of the Mini-WHEGSTM series only move forward in a straight line until stopped.

2.7.3 RHex. The six legged RHex robot [22], shown in Figure 2.5, is about

0.53 meters long, weighs 7 kg, and is controlled by a PC104 stack with a 100 MHz

Intel 486 CPU. The purpose of the design of this robot is to demonstrate a method of

locomotion that is comparable to wheels in speed but capable of traversing very rough

terrain without complicated mechanisms. The RHex robot has six single jointed legs,

three on each side, each powered by a 20 watt motor. Compared with wheels, legs

have far more control over the ground reaction forces (GRF) by varying the angle of

contact with the ground. However, it is more complicated to control than a set of

wheels on a robot. RHex is designed with a control algorithm that tries to maintain

three legs on opposite sides of the robot to be in contact with the ground at all times

to keep the robot platform stable. When it moves, the rotation of front and back

leg on one side of the robot stays in phase with the middle leg of the other side of

the robot. To turn while moving forwards or backwards, the rotation speeds of legs

on the two sides of the robot is varied, while reversing the rotational direction of

the two sides of the robot allows the robot to turn in place. Having an independent

motor with its own controller for each leg allows the control algorithm to produce the

walking and turning behaviors described above and much more. Also, the sensors on

the RHex provide limited monitoring of its body position. Despite this, the control

17

Figure 2.5: RHex Experimental Platform [22].

algorithm and the mechanical structure of the robot is produce a moderately stable

physical platform while it moves.

Like the WHEGSTM and the related Mini-WHEGSTM series of robots, the

RHex has superior performance over rough terrain. Unlike the WHEGSTM , the

position of the leg at any one time is essential to keeping the RHex off the ground.

The control algorithm creates a “tripod gait” that tries to keep the RHex on its feet.

The WHEGSTM on the other hand loses a certain amount of flexibility in behavior

with extra spokes per leg but simplifies the control algorithm by not needing to control

and maintain specific rotational phase differences between the legs. Where the RHex

robot needs to coordinate six motors to walk and turn, the WHEGSTM only needs

one control signal for speed and a second for direction.

The RHex has a powerful PC104 stack that does not implement autonomous

characteristics for the RHex. This robot appears to only have the most basic behavior

modules and a way for human operators to give it movement commands. Its relatively

18

Figure 2.6: Hexapod III Kit Constructed and Wired [18].

complex control system has heavy computational needs despite the fact that it is also

relatively simple compared with other legged robots.

2.7.4 Hexapod with IsoPod. Pashenkov [18] explores the use of a new embed-

ded controller on the six-legged Hexapod shown in Figure 2.6. The IsoPod embedded

development board convenient processing core for autonomous robots. The board

contains a fast, general purpose DSP chip as its processor, a number of I/O options

including 12 PWM outputs, and an expansion board that allows up to a total of 22 ser-

vos to be controlled by the IsoPod board. The IsoPod comes with a “virtual-parallel

processing” operating system called IsoMax that runs the user programmed finite

state machines. This makes it very simple to implement and debug simple behaviors

since the programming language consists of describing each node and transition of the

finite state machines. To complement these features, Brook’s subsumption architec-

ture [6] is the control architecture. The subsumption architecture is based on layers

of behaviors with higher layers suppressing the output of the lower layers as needed.

Each of these layers are modular and can be represented by a finite state machine.

19

The first version of the subsumption walking controller for this robot is based

on a Brooks design [7] for six-legged robots. This design intuitively builds up from

the most basic “behaviors” of controlling the position of the leg above the starting

ground plane and controlling the position of the leg forward of the starting “relaxed”

state. Added to this are higher layers that move the leg up and down, forward and

back, a walking module that causes the walking rhythm to ripple through the network

of modules, and models that incorporates sensor inputs. This network of modules is

perfectly functional but is no longer strictly layered. Another version of the walking

controller tested is designed by Porta and Celaya [20] and is capable of walking on

rough terrain. This controller is still based on Brooks’ design but some modules have

been replaced and the layers have been reordered. The resulting controller shows the

layering characteristic of subsumption architectures with motor control modules at the

bottom and sensing and walk modules at higher layers. The final controller is based

on Porta and Celaya’s controller. Again, modules were replaced and layers reordered.

However, this controller is much clearer with higher level modules distinctly above

lower level motor control modules and even makes the two types of motor control

distinct (vertical and horizontal movement of the legs).

This IsoPod as a one-chip controller is much more powerful than early attempts

with the subsumption architecture and can easily handle the computational require-

ments of the subsumption architecture. The built in IsoMax operating system also

provides a easy way to program basic behaviors using finite state machines(FSM).

However, more complex behaviors may be harder or even impossible to describe as

FSMs. For example, an IsoPod probably has enough on-board memory to hold a

basic model of the environment along with algorithms to control the robot but there’s

no mechanism to take advantage of it. IsoMax seems most suited to executing the

actions from behaviors or low level control behaviors but is also limited by the control

architectures the IsoPod can support.

20

Figure 2.7: Climbing Microrobot [26].

2.7.5 Climbing Microrobot. The climbing microrobot [26], shown in Fig-

ure 2.7, is a design that resemble an inch worm. The microrobot is controlled by

a Texas Instruments TMS320LF2407 DSP embedded controller and is two legged,

about 80 mm long, 50 mm wide, and 450 grams in mass (3.15 in by 1.97 in, 1 lbs.).

It is basically two legs with a horizontal component connecting them. The robot is

underactuated, which means it has more degrees of freedom (DOF) than number of

actuating servos. There are 5 joints in the robot and 3 servos. Joint 1 and 5 bend

the pads of leg 1 and 2 respectively and are driven by servo 1 and 3. Joint 2 and 4

rotate legs 1 and 2 and are driven one at a time by servo 2 along with joint 3 which

extends and contracts the robot to change the length of the robot and the distance

between the legs. Using this hardware configuration, three modes of kinetic operation

are implemented: translation, spin 1, and spin 2. The translation mode uses servo 2

to extend and contract the robot. Spin 1 uses servo 2 to extend the robot and at the

same time, rotate leg 1. Finally, spin 2 uses servo 2 to contract the robot and at the

same time, rotate leg 2. With the 3 modes above and controlling server 1 and 3, three

21

gaits are defined: crawling, pivot, and climbing. Crawling is basically the translation

mode of operation and combined with bending joint 1 and joint 5 on leg 1 and 2 where

needed to provide full clearance for extending and contracting the robot. This allows

the robot to crawl like an inchworm. The pivoting gait is more complicated and uses

spin 1 and spin 2 modes and bends joint 1 and joint 2 to provide clearance. The

resulting motion is like a stiff-legged crab walk. Since two legs are considered front

and back legs, the pivoting gait walks the robot sideways like a crab. The climbing

gait is much more complex using the translation mode and joints 1 and 5 to traverse

between two intersecting planer surfaces. The robot must start near the destination

surface in a contracted state. This is followed by bending joint 1 and extending the

body to reach the surface and bending joint 5 match the angle of the target surface.

Once the foot pad of leg 2 is secured to the target surface, the rest of the robot can

contract and leg 2 repositioned on the target surface by bending joint 1 and 5 again.

The control architecture of this robot centers around the task level scheduler

which corresponds to the sequential layer of a three tiered architecture. The task level

scheduler takes task level commands given to it and uses a finite state machine to keep

track of robot motion status and decompose the command into several motion steps.

These motion steps are passed to the behavioral layer where this robot’s trajectory

planner resolves the inverse kinematic model and interpolates the path to generate a

set of desired joint angles. These joint angles are then sent to the joint level controller

that sends control signals to the motors and receives feedback from the motors and

several other sensors to increase the accuracy of the resulting action. To provide

command inputs to the task level scheduler, a human operator could send commands

to the command interpreter which outputs task level commands. There is also a

motion planner that is like a deliberation layer that takes the initial state, goals, and

environmental state to produce commands for the task level scheduler. The motion

planner consists of a global planner and a local planner. The global planner finds a

possible path that allows an object the size of the robot to fit through. The local

planner takes the possible path and produces a feasible path by testing parts of the

22

path that might be problematic to something that moves like this robot such as tight

corners of the possible path. If the possible path is found to be not feasible, the

local planner requests a new path from the global planner that does not include the

problem area. The planner basically does an A* search of the possible paths until a

feasible path is found. After a feasible path is found, it is translated into a motion

sequence that the task level scheduler can implement.

This microrobot has undergone not only simulation testing but also experimen-

tal tests. All gaits function but are limited to smooth surfaces (the kind the vacuum

foot pads can attach to). A motion planning simulator tested the motion planning

in a software environment before it was tested in a simple maze. The robot is small,

relatively simple, and has impressive climbing abilities but is mechanically far more

complex than a WHEGSTM [24] robot. The control architecture is very modular. If

this robot is modified to have four legs simply for greater payload carrying abilities,

only the joint level controller need be modified. Even with additional movement gaits,

the task level scheduler may not need updating, just the motion planner to utilize it

and behavioral level controllers to direct the servos. The motion planner requires an

accurate up-to-date state of the environment to function properly. Given that this

is a small robot, it cannot carry many sensors to build an environment model. The

accuracy of the map given to the planner is especially important since a few centime-

ters could mean the difference between a negotiable corner for a feasible path and an

area the robot could get stuck in.

2.7.6 Kaa. Another unique robot, Kaa [8] is designed for climbing up

and down pairs of pipes. Shown in Figure 2.8, Kaa is a serpentine robot with 13

segments and 12 degrees of freedom. Two 8-bit microprocessors control the robot:

one processor control and receive feedback from the servos, the other executes a

subsumption architecture [6] controller. The control unit is in the center of the snake

rather than one of the two ends to divide the serpentine robot into two tentacles.

Servo commands are passed down each segment and acted on in sequence. When the

23

Figure 2.8: Kaa Robot Gripping Two Pipes [8].

central command segment commands a tentacle to grip a pole, the command is sent

to the outermost segment to activate its servo to curl the tentacle in the commanded

direction. When the movement of the first segment is complete, it passes the command

on to the next segment to activate its servos. By the same mechanism, the robot also

straightens the tentacles and form traveling waves for locomotion on the ground. This

very simple control system also acts like the message based architecture [9] with the

potential to add or remove segments for a robot of any desired length.

Kaa is capable of grasping pipes and crawling along the ground using a 32 kB

control program. The robot also does not have any sensors to sense the environment

other than torque feedback from its servos. The additional sensors would allow it

to locate pipes it has not yet made physical contact with and additional degrees of

freedom for out of plane motion would allow climbing.

2.8 Overview of the Autonomy of the Biologically-Inspired Robots

Of the six robot systems presented, few had behaviors more advanced than move

forward or move to a location. The WHEGSTM [24] rely on human operator input

for waypoints. Its only autonomous behavior is collision avoidance enroute to its tar-

24

get locations. Its smaller sibling the Mini-WHEGSTM [15] does not have the GPS

receiver needed to navigate to specific locations nor the sensors required to detect ob-

stacles in its path. It simply moves forward until the human operator intervenes. The

RHex robot [22] requires a relatively complex control system to position its swinging

legs correctly while moving or turning. The system is dedicated to maintaining the

walking rhythm but it should be powerful enough to execute a reactive paradigm

control architecture on top of the leg control algorithm. The Hexapod [18] already

implements the subsumption architecture to control its leg movements. The robot

should be able to incorporate abstract behaviors on top of the existing walking be-

haviors. The climbing microrobot [26] is perhaps the most architecturally advanced

of the six. It is similar to Gat’s three-layer architecture [10] with a motion planner to

build the movement steps and a task level scheduler that make sure they’re carried

out in sequence. Lastly, Kaa [8] also incorporates a subsumption architecture used

to wrap the serpentine robot around pipes or undulate on the ground for locomotion.

Again, it’s possible for a new higher level behavior to grant this robot more autonomy.

2.9 Summary

Among the different types of control architectures presented, reactive behavior

architectures are most like an insect’s simple control system. Following a design that

mimics insect behavior, responsiveness to the environment takes the highest priority

while planning may not even be required. The intended operating environment of

the robot is tight quarters with rough irregular terrain. This limits the size of the

robot and also limits the choice of control architectures. To minimize size and power

requirements on a small robot, a microcontroller is the physical “brain”. The limited

memory and processing capacity available precludes a probabilistic architecture as

well as a three-layered architecture if it is not necessary. Finally, a properly designed

message based architecture closely resemble reactive architectures. The advantage

of the message based approach would be ease of adding additional components to

the robot. Given the size restrictions, the insect like robot does not require such

25

flexibility. The advantage gained from using reactive architectures include building

complex behaviors out of hierarchies of simpler behaviors. And of course, the UBF [25]

gives flexibility of design and reusability of behaviors in different robots, even large,

wheel robots.

Of the robot platforms presented, the climbing microrobot [26] and Kaa [8]

are not based on insects. The inch worm like climbing microrobot uses a hybrid

paradigm control system to allow it to plan and carry out maneuvers through tight

spaces. Its movement mechanism contribute greatly to the need to carefully plan its

actions. Although the climbing microrobot is also able to transit from crawling on

the ground to crawling up walls, the smooth walls it requires are not in abundance

where insects scurry. Speed of movement is more important than the ability to climb

vertical surfaces. Kaa resembles a snake and is designed to climb pairs of parallel

pipes. Its subsumption architecture [6] allow it to respond quickly and wrap itself

around poles when they’re detected and ripple across open ground. Unfortunately,

neither of these alternatives allow fast movement across the ground like the insect

inspired robots.

The remaining robots are either six-legged insectoid robots or are based on the

attributes of an insect. While the other three insect inspired platforms do not carry

sensors, several models of WHEGSTM [24] include ultrasonic range finders [13]. Their

use was inspired by certain crickets and bats which use sound to detect objects. These

range finders replaced the need for mechanical antennae or whiskers for detecting ob-

stacles and are able to detect objects at a greater range. Using two ultrasonic sensors

set at an 22.5 degrees from directly ahead, 45 degrees apart, an object avoidance

behavior autonomously guides the path and speed of the WHEGSTM to avoid colli-

sions. This allows the cockroach inspired WHEGSTM to speed through dark, unlit

spaces and maneuver around objects detected by its probing ultrasonic antennae.

26

III. Design

The goal of this thesis is to adapt the UBF to an embedded processor and to create

a Mini-WHEGSTM [15] controlled by the embedded version of the Unified

Behavior Framework (UBF). The UBF can execute on the embedded processor, it

must interface with the underlying hardware platform. For a practical robot, the

hardware platform also includes several sensors in addition to the motors that enable

movement. This chapter describes the details of integrating the hardware components

with the embedded processor, and with the UBF.

This chapter presents a broad overview of the design, then covers three distinct

areas to describe the hardware components of the robot, the software platform that

supports the UBF, and the modified UBF, including the demonstration behavior.

3.1 Overview of the Design

The Mini-WHEGSTM , a biologically inspired robot, is fitted with sensors and

integrated with a modified version of the UBF. This system is low cost, responsive,

and capable of performing simple tasks, such as tracking a target, identifying an

object, or general exploration. The wheel-legs also allow the robot to traverse rough

terrain. This, combined with its small size, allow the Mini-WHEGSTM to perform

its tasks in confined areas, like the cockroaches that inspired its design.

The first step to developing the new Mini-WHEGSTM is selecting an embed-

ded processor and connecting the hardware components to it. The Blackfin BF537

microcontroller is selected for its computational resources and having the necessary

interfaces to connect the desired hardware components. The availability of a Linux

based operating system, uClinux-dist-2008R1.5-RC3, for the Blackfin processor pro-

vides a powerful software platform for the UBF to run on the Blackfin. The selected

hardware platform also comes with an attached camera and a wireless device server.

In addition to this core set of component, there are a pair of motors controlled by

bi-directional speed controllers along with rotary encoders attached to each motor,

and a set of IR range finders.

27

The next step is the preparation of the uClinux kernel drivers to access the

interfaces connected to the hardware components. The camera requires a complicated

driver to initialize and to capture images on request. The motors’ speed controllers’

accept pulse-width modulation signals which require the simple gptimer driver. To

communicate with the IR range finders, the I2C drivers are needed since the range

finders are attached to the I2C bus. Finally, the bfin-gpio driver is extended to enable

it to communicate with the rotary encoders.

The remaining step is customizing the UBF to the capabilities of the assembled

hardware configuration. To support the integration of the UBF to the platform, a

hardware abstraction layer is built to unify the drivers into one interface for the UBF.

This provides a separation between the UBF and the hardware platform to make

the UBF a multi-platform architecture. On top of this hardware abstraction, a ball

seeking behavior is created to demonstrate the UBF’s functionality on this biologically

inspired robot.

3.2 Hardware Specifications

The embedded computational hardware derives from a Surveyor SRV-1, a small,

tracked robot. It is equipped with a microprocessor with several interface ports,

a camera, two lasers, a wireless embedded device server, and two rubber treads.

Designed for educational and research purposes, the SRV-1 can be remotely operated

through a wireless interface or act independently as an autonomous robot. Shown in

Figure 3.1, the microprocessor, the camera, and the wireless device server is retained

for the Mini-WHEGS while a new set of motors are used. In addition, a pair of

encoders attached to the motors keep track of the robot’s position, and two IR Range

Finders provide information for collision avoidance.

3.2.1 Microprocessor. At the heart of the system is the Blackfin BF537

microcontroller [2]. It is a 32-bit RISC microcontroller operating at 500MHz, with 48

GPIO ports and a variety of interfaces including a I2C compatible two-wire interface

28

Figure 3.1: System Block Diagram.

(TWI), PPI, and 9 general purpose timers, eight of which produce PWM output.

Also attached is a 4MB flash memory device to store instructions for execution on

power up, and 32MB SDRAM of memory space for use during execution. Figure 3.2a

diagrams how the remaining hardware components are physically connect to the mi-

crocontroller, and Figure 3.2b shows how the components are connected from the

software point of view. The details of how each component is connected is discussed

in their respective section.

3.2.2 Motor. The Mini-WHEGSTM is driven by two motors. Where other

variants of Mini-WHEGSTM use a servo for steering and a motor to drive the Mini-

WHEGSTM forwards and backwards, this variant uses one motor to drive the pair

of wheel-legs on the left side, and the other for the right. Steering is accomplished

by skid steering which uses the speed differential between the left and right side

wheel-legs to turn while the surface contact points undergo controlled skidding. The

motors are each controlled using a bi-directional speed controller, which is controlled

with pulse-width modulation (PWM) signals with a period of 20ms and “high” cycle

of between 1.5ms and 2.0ms for increasing forward speeds and 1.5ms and 1.0ms for

reverse speeds. Shown in Figure 3.2a, the motors’ control wires are connected to two

29

(a) (b)

Figure 3.2: (a) Component Wiring Diagram. (b) Component Connection Diagram.

of the Blackfin processor’s PWM output pins, TMR2 and TMR3. Figure 3.2a shows

that gptimer2 and gptimer3 are the internal designators for controlling the motors.

3.2.3 Encoder. While the motors drive the robot, an encoder attached to

each motor tracks the amount of rotation of the motor drive shaft. Two 1024 count

rotary encoders are used, one on each motor. Two digital data channels from each

encoder convey the amount and the direction of rotation. The pairs of data channels

are set to logical high or low depending on the position of the motor shaft. When

the shaft rotates, the signals on the data channels are square waves 90 degrees out

of phase with each other as shown in Figure 3.3. A complete rotation produces 1024

cycles of square waves on each data channel. The phase difference between the pair

of channels, whether channel A is 90 degrees ahead or behind channel B, tells the

direction of rotation. These data channels are connected to two pairs of general

purpose IO (GPIO) pins set aside for the rotary encoder. Shown in Figure 3.2a and

b, the encoders connect to rotary0 and rotary1, which correspond to the last four pins

of Port H. The left encoder is connected to rotary1 because that results in shorter,

untangled wiring connections.

30

Figure 3.3: A and B Data Channels of the Rotary Encoder.

3.2.4 Camera. The camera is the most important sensor for this basic,

insect like robot. It allows the robot to identify and follow objects of interest, flee

brightly lit environments, and even receive visual instructions. The OV9655 CMOS

camera mounted on the SRV-1 is a color camera capable of capturing YUV and RGB

formated images with resolutions up to 1280 by 1024 pixels in 16-bit color. Shown in

Figure 3.2b, the processor communicates with the camera through an I2C [1] interface

to control the camera and a special Parallel Peripheral Interface (PPI) [2] to receive

the captured image. The SRV-1 positions the connector for the camera so it is securely

mounted at the front of of the circuit board, facing forward. Figure 3.2a does not

specify the wiring connections of the camera since there is a special connector reserved

for it.

3.2.5 IR Range Finder. The IR Range Finder connects to the microcon-

troller through an I2C bus as shown in Figure 3.2a, without out the need of pull-up

resistors since there are already other devices on the bus. The I2C connection allow

range values to be read from the sensor package’s registers. Three sensors are avail-

able with three different operating ranges: 4-30cm, 10-80cm, 20-150cm. The range

readings are returned in millimeters.

3.2.6 Wireless Device Server. The wireless device server is a wireless connec-

tion point that is available for connection from any computer equipped with a wireless

31

Figure 3.4: Relationship Between the Software Drivers and
the Rest of the System.

modem. Shown in Figure 3.2b, the device server connects to the UART0 port of the

microcontroller. Its sole purpose is to take messages received wirelessly and pass it

through the UART to the processor and send messages received through the UART.

Figure 3.2a labels the pin connection points that allow the same communications on

a wired connection to the Blackfin.

3.3 Software Platform

A major advantage of the Blackfin microcontroller is the availability of a Linux

based operating system. This eases the adaptation of UBF to a microcontroller archi-

tecture. Operating in a Linux environment also means the underlying hardware can-

not be accessed directly. Fortunately, most of the necessary hardware kernel drivers

already exist and only need modifications to fit the requirements for controlling a

robot. The collection of disparate drivers are inconvenient to integrate with the UBF

so a hardware abstraction layer was created as the single hardware interface for the

UBF. Figure 3.4, shows the relationship between the Linux kernel drivers, the user

level hardware abstraction layer, UBF, and the Blackfin microcontroller.

3.3.1 Operating System. uClinux [14], a flavor of Linux, is designed for

use on microcontrollers in embedded applications. The uClinux-dist-2008R1.5-RC3

32

used for this robot is designed for Blackfin microcontrollers. After boot up and login,

the Linux directory structure is available for access along with many of the standard

Linux commands.

Several differences between uClinux and common flavors of Linux exist. The first

is the size of the boot image. In embedded applications, the total available memory

is always limited. For example, the BF537 system used in this robot has only 4MB

of flash memory to boot up from and 32MB of RAM for execution. uClinux is easily

configured to add or remove drivers and user applications to control the final boot

image size. The required kernel drivers such as bfin timer and bfin-gpio must be

included to interact with the hardware components. Other drivers such as those for

graphics, sound, and USB are not included to reduce the size of the boot image.

Another difference between uClinux and common flavors of Linux stems from

the fact that uClinux is designed for microcontrollers that do not possess memory

management units (MMU). Linux ordinarily takes advantage of virtual memory to

optimize the use of memory during execution and to help maintain distinct memory

spaces for each running process. uClinux manages memory usage without hardware

assistance and does not use virtual memory techniques. This is normally not an

issue for embedded system since they generally do not require multiple processes

to execute at once. However, knowledge of this limitation can mean the difference

between a successful embedded application and one that runs out of memory. Since

memory blocks cannot be remapped as is the case with virtual memory, excessive use

of dynamic memory allocation can leave the RAM without sufficiently large blocks of

free, contiguous memory to satisfy certain memory allocation requests. The simplest

way to avoid this problem is simply avoiding dynamic memory allocation, instead

allocate memory statically as much as possible.

The second pitfall is the aggravation of the buffer overrun bug. Buffer overrun

occurs when an application attempts to write beyond the end of the allocated buffer

in memory, and is a common problem in C/C++ programs where array bounds are

33

not checked. No hardware memory management support also means no memory

protection. Common flavors of Linux will stop execution on departure from valid

virtual memory space, uClinux does not notice the application is writing to memory

outside of its assigned area. If the buffer overrun overwrites some part of memory

in use, which is likely given the limited RAM, either data or program instruction is

corrupted.

3.3.2 Simple GPTimer Driver. The PWM signals for the motor controls

are generated by the bfin timer. This driver allows the setting of the PWM signal’s

period as well as the width of the high cycle, simply by opening the appropriate device

file descriptor and sending an IO command. The standard setting for controlling the

motor controller is a period of 20ms with high cycle between 1ms and 2ms where

1.5ms would be zero speed. The lack of documentation led to a full scan of the high

cycle width, which determined that a initialization signal of 1.6ms is required as well

as the actual zero speed being approximately 1.55ms. Also, a “zero” zone of motor

speed is found between 1.62ms and 1.48ms.

3.3.3 GPIO and Encoder Driver. The most basic driver required under

uClinux is the bfin-gpio driver that is for accessing the GPIO ports. Fortunately, it

is supplied in the current of the operating system. With the kernel driver loaded, all

subsequent use of GPIO ports are done in user space as low level file operations.

Unfortunately, there is no rotary encoder driver for BF537. An interrupt handler

is added to the bfin-gpio driver to monitor two pairs of GPIO, gpio44 and gpio45,

and gpio46 and gpio47, for the encoder functionality. The interrupt is set to trigger

on both the rising and the falling edge of each data channel and maintain individual

counts. When 4 events are counted for both data channels in a pair, the encoder

records one tick (with 1024 ticks per motor rotation). Initially, this driver was designed

to identify reversal of direction of rotation based on the interrupt event counts and

automatically track direction of movement as well as maintain the distance count

centered at the start location. This proved to be unreliable as there are false trigger

34

events that randomly reverses the direction of movement. To maximize accuracy, the

user supplies the expected direction of movement to the encoder driver to enable the

driver to ignore false trigger events. When the user application, the UBF in this case,

commands the motor to rotate, the direction of rotation is also given to the rotary

encoder driver. The encoder driver then resets the tick counts to measure the linear

distance traveled in the given direction since the last direction change. This simpler

rotary encoder driver provides accurate rotational tick counts in the direction of the

last user command and leaves the rest of odometry based position tracking to be

handled at the user level.

3.3.4 Camera Driver. The OV9655 camera driver was found to be in a

partially functional state. It contained enough instructions to prepare the I2C and

PPI connections to the camera and initialize it to capture 1280 by 1024 pixel im-

ages. However, it did not respond to any other commands since they had not been

programmed. Using the OV9655 camera datasheet as well as the SRV-1’s default

firmware source code as a reference, a complete set of camera control codes are added

to set the camera similar to the functional firmware camera control code. The camera

has numerous settings that can be set through the I2C interface. The complete set

of camera control codes found in SRV-1’s firmware source code initializes the camera

and prepares it to capture images in YUV format. Using the OV9655 datasheet,

additional control code sets are added for changing the camera’s image capture reso-

lution and capture format. In actual usage, the camera is set to return 16-bit RGB

formatted images at 1280 by 1024. Any further processing of the captured image,

such as down sampling, is done at the user level.

3.3.5 I2C driver. The I2C driver is a selectable kernel driver in uClinux.

Although the primary use of the driver is to communicate with the IR Range Finders,

it can also communicate with the camera. To access the I2C bus through this driver,

the user level application uses low level file operations to read from or write to specific

registers of the device specified by an I2C device address.

35

3.3.6 Wireless Communications. Wireless communications is extremely

simple if the messages contain only ASCII text. The wireless device server allows

a socket to connect to the device and communicate in messages in plain text with

the microprocessor. Although the system cannot initiate wireless communications,

once an external device connects to the wireless device server, communications is as

simple as reading from and writing to the console without requiring a software driver.

For example, in C, the printf and fgets functions are all that is needed communicate

through the wireless device server.

3.4 UBF on Blackfin

Porting UBF to the Blackfin BF537 running uClinux requires writing a new

user level hardware driver to facilitate interfacing the “generic” UBF to the particular

platform and writing behaviors appropriate to the capabilities of the robot and the

desired task goals. Memory management and memory size can be problematic, which

requires good programming practice to prevent their occurrence.

3.4.1 User Level Hardware Driver. The user level driver organizes all the

necessary calls to initialize and operate devices and collect them together to create

one simple interface to the underlying hardware. Two new classes are created. The

first act as a Hardware Abstraction Layer (HAL) to provide standard functionality to

the UBF without needing to know the nature of the hardware platform. The second

is a camera class within the HAL class designed to initialize the camera as well as

hold the helper functions for processing the captured image. Figure 3.5 gives a visual

description of the relationship between the HAL class named miniWHEGS, the rest

of UBF, and the hardware it controls.

The miniWHEGS class prepares the underlying hardware for use by the UBF

and groups all access functions together to form one monolithic interface. At startup,

it initializes the two PWM generators for controlling the motors and the two rotary

encoders to track the rotation of each motor. The class also exposes access functions

36

Figure 3.5: Relationship Between the UBF and the Hardware
Components.

for controlling the LEDs and for retrieving the change in position and the direction the

robot is facing. This is also where the physical dimensions of the robot are set which

are required for computing the physical position and orientation from the encoder

tick counts. The motor controls are abstracted as a turn command and a speed

command which are converted within the HAL to speed commands for the left and

right motors. Skid steering allows maneuvers such as turning in place that pivoting

wheel-legs cannot achieve. The speed and turn commands are both abstracted to the

range of values between +100 and -100. Positive speed is forward while negative speed

is reverse, and positive and negative turn values are left and right turn respectively.

Abstracting the steering capability to turning and forward or reverse speeds allow

greater compatibility between the UBF for the skid steering Mini-WHEGSTM and

other robots, including other versions of Mini-WHEGSTM .

The camera class is a separate object inside the miniWHEGS class to contain

the complexity of operating the vision system. The class holds all the variables needed

to operate the camera and its image processing functions. The initialization function

holds the full set of calls necessary to prepare the camera for use and start capturing

37

Figure 3.6: Visual Representation of the seekcolor Algorithm.

images. The primary use of the camera is to find the relative position of objects of

the desired color range in the horizontal plane. To support that use, the camera class

includes subsampling to reduce computation time and a simple 1-dimensional color

concentration detector. The subsampling function accesses the image plane at a lower

resolution index count and skipping pixels. By default, the subsampling algorithm

skips 8 pixels in both the x and y axis, picking out a sparse matrix of 160x128 pixels

from 1280x1024 pixels. After using the subsample function to obtain a reduced image

plane, the color concentration detection function called seekcolor scans the image for

pixels of the desired color range defined by upper and lower RGB bounding values.

Depending on which of 5 vertical bins of pixels the desired color is found, the count

is tallied to find the approximate angle to the object. The center bin is 0 degrees

deviation to the object, the inner bins indicate a deviation of 7 degrees, and 14

degrees for the outer bins. This is represented visually in Figure 3.6. The 5 triangular

fans of the divided field of view each contain a certain number of pink pixels, which

in this case is most concentrated at 7 degrees to the left of center. The pixel count

38

(a) (b)

Figure 3.7: (a) Structural Diagram of the Ball Seeking Behavior (b) Functional
Diagram of the Ball Seeking Behavior.

also gives a sense of distance to the target. Since the target has a fixed size, it has

predictable pixel counts at varying distances away from the camera.

3.4.2 Seek the Big Pink Ball. The goal of this robot is to simulate insect

behavior. This set of behaviors chase a bright pink object but backs away if the object

is too close. If no bright pink object is in view, it searches for the object. Shown in

Figure 3.7a and b, three separate behaviors combine to produce the final behavior:

search, chase, and flee. Figure 3.7a shows the structure of the composite behavior

and Figure 3.7b gives a sense of how the prioritymerge treats the three behaviors.

The first behavior module is search and produces an action only when no pink

pixels are found. When active, the behavior initially maintains the previous turn

command. A counter included in the state object allow the behavior to periodically

choose a random turn direction, at which time, the Mini-WHEGSTM begins turning

in a small circle. The search behavior produces a movement command with forward

speed of +10 and turn value of ±80. Upon detecting pink pixels, search deactivates

and allow chase to turn and move the Mini-WHEGSTM toward the pink ball. The

chase behavior tries to keep the ball in the center of the visual field while moving the

robot closer to the target by setting a constant forward speed of +40 and turn value

of 0, ±30, or ±60, depending on if the detected pink pixels are concentrated in the

39

center bin, inner bins, or outer bins. As the pink ball grows larger in the visual field

and the pink pixel count climbs, flee inhibits the forward driving command of chase

without a turn command and eventually bring the robot to a halt at a comfortable

distance from the pink ball. Starting at a pink pixel count of 100, the flee behavior

produces 0 speed. With increasing pink pixel count corresponding to a closer pink

ball, the behavior produce increasingly negative speed up to -80. The comfortable

distance where the combination of chase and flee speed commands stop the robot

occurs at the distance where the highest pink pixel count out of the center bin is 140

pink pixels. If the pink ball grows even larger in the visual field, that is, it moves to

within the comfort range of the Mini-WHEGSTM , flee overcomes the forward drive

command of chase to back the robot away from the pink ball at a maximum of -40

speed to maintain a safe distance from it. All three behaviors seek the same pink ball

between the RGB color values of [0, 20, 40] and [255, 140, 180].

The search module operates by superseding other behavior modules when a

specific condition is met, which is when no pink objects are detected. The chase

and flee modules complement each other. The chase module keeps the pink ball

centered in the visual field and the flee inhibits and overcomes the forward movement

of chase when necessary. The arbiter appropriate for these three behavior modules is

the prioritymerge arbiter.

3.4.3 PriorityMerge. The characteristics of prioritymerge are that the high-

est priority action is selected and equal priority actions are summed. This is very

similar to highestactivation where the highest value action is selected. However, high-

estactivation is not designed to handle multiple equal valued actions and will only

select the first of several highest valued actions. The prioritymerge arbiter handles

the situation by summing the equal valued actions of the highest value found. Fig-

ure 3.7b indicates that chase and flee have equal priority by design, and competes

with search for highest priority together.

40

3.4.4 Customized State and Action. The last of the Mini-WHEGSTM

specific changes to UBF are a new derived state object called state miniWHEGS

and a derived action object called action miniWHEGS. Both of these objects con-

tain additional functions and variables to allow access to motors, encoders, camera,

range finder, and wireless communications defined through miniWHEGS. Functions

in state miniWHEGS provide processed odometry data in x, y, and facing angle. It

also provides direction and pixel count for the desired color, range to obstacles de-

tected by the IR Range Finders, the current set speed and turn rate, and last message

received through the wireless device server. Functions in action miniWHEGS allow

behaviors to set the seek color range, the speed and turn rate, and set messages to be

sent though the wireless device server.

3.5 Summary

Implementing UBF on a new physical platform involve designing the hardware

configuration, a hardware/software interface, and UBF state and action objects ex-

tended to take advantage of the hardware. The hardware configuration must be

capable of supporting the task goals. This includes at a minimum motors to move the

robot around in the physical world and sensors to take input from the environment.

On top of that, a Linux based operating system provide a consistent target devel-

opment platform for programmers, as well as drivers for the hardware components.

Integrated at the lowest level of the modified UBF is a hardware abstraction layer to

provide a consistent hardware interface for the generic UBF. Finally, the generic state

and action objects are extended to match the capabilities presented by the HAL. All

of these changes allow behavior modules to be compatible between UBF running on

the Mini-WHEGSTM and UBF running on similarly configured hardware platforms.

41

IV. Results

As a biologically inspired robot, the Mini-WHEGSTM [15] with the Unified

Behavior Framework (UBF) is drawn to and fears the pink ball much like a

moth is drawn to a flame yet fearing the heat when it gets too close. Achieving

this behavior requires that each hardware component be characterized so they can be

properly integrated to the software. As one coherent system under the HAL and UBF,

the Mini-WHEGSTM exhibits lifelike behavior which demonstrates the effectiveness

of the UBF on the embedded system, and meeting the biologically inspired goal.

This chapter characterizes each hardware component as they are integrated

into the hardware abstraction layer (HAL). This is followed by a presentation of the

observed behavior of the UBF customized for the Mini-WHEGSTM [15] in several

test scenarios. These scenarios test the response of the robot in a environment with

the ball in a fixed position, and in a dynamic environment where it responds to a

moving ball.

4.1 Hardware Development Results

Four components underwent significant development to integrate into the HAL.

The PWM motor control was simple in theory but still required a brute force solution

to determine the proper control protocol. The rotary encoder required an expansion

to the existing GPIO driver. The camera driver, while it was preexisting, it was not

complete. Lastly, the IR range finder is not be detected on the microcontroller’s I2C

bus and remains unintegrated.

4.1.1 PWM motor control. Each motor is controlled by a speed controller,

which responds to a PWM control signal. Ideally, the same PWM signal sent to

both speed controllers results in both motors rotating at the same rate. In real life,

slight differences results in one motor rotating slightly faster than the other. In this

robot, the right motor is slower than the left motor and has a larger “zero speed” zone

around the actual zero speed. Since the HAL remaps UBF motor commands to PWM

42

signals for the speed controllers, careful characterization of the command response of

each motor allows the HAL to compensate for the speed difference between the two

motors.

4.1.2 Rotary Encoder. The rotary encoder requires additional functionality

to be implemented in the bfin-gpio driver. The rotary encoder output signal is well

documented and is received by setting specific GPIO ports to count the rising and

falling edges of the rotary encoder signals. During hardware tests with the rotary

encoder driver, false signal edges made automatic detection of the direction of rotation

impossible. Ideally, the encoder keeps track of the amount of rotation as well as

the change in direction of rotation as an independent feedback of the movement

commands. Since the direction of rotation cannot be reliably tracked through the

encoder, the HAL stores the movement direction of the last action command and use

it to calculate the position and pose of the robot. If an external force push the robot

in such a way that the wheel-legs rotate opposite the expected direction based on

the movement command, the real movement of the robot would not be accounted for

correctly.

4.1.3 Camera. Preparing the camera for use with UBF involve finding the

color range of the bright pink ball the Mini-WHEGSTM is to seek. By capturing an

image from the camera and examining the RGB color components of the the pink ball

in the visual field, upper and lower bounds for the acceptable color range is found.

However, the exact relations between RGB values that differentiate between colors is

more complicated. The algorithm used to determine if a pixel is pink first checks if

the RGB components are between the low limit of [90, 20, 40] and the high limit of

[255, 120, 160] for the red, green, and blue components respectively. This does not

adequately differentiate pink for similar yet visually different colors such as orange.

Adding a second step to check that the red value greater than the blue component,

and that the blue component is greater than the green component yields more reliable

results. However, the determination of color is still highly dependent on the lighting

43

Figure 4.1: Mini-WHEGSTM Sees the Pink Ball at 360cm

conditions. Perhaps a different color space can better differentiate between colors that

are distinct to the human eye.

Other characteristics of the camera that greatly affect the behavior of the robot

are field of view, visual range, and response time. The field of view of the camera

is found to be only about 35 degrees wide. The camera can detect objects directly

in front of it but casually waving the object in front of the camera easily moves it

in and out of the field of view. The UBF designed for this robot compensates for

the intermittent loss of tracking by storing and continuing the last turn command

with the expectation that the pink ball is just outside the narrow field of view in

that direction of the turn. The visual range of the robot is greater than is needed for

operating in small enclosed areas. For an object the size of the pink ball, which is

about 6.5cm in diameter, the camera can distinguish the ball at 360cm away. This

is shown in Figure 4.1, which is an image of the ball at approximately 360cm away,

captured by the camera, and down sampled to 160x128 pixels. However, the detection

of pink pixels start to become sporadic at this range from the larger proportion of

44

white glare, and the dark, unlit underside of the ball. The minimum visual range

of the camera partly results from the camera’s physical location on the robot and

partly from the narrow field of view. Shown in Figure 4.3, the ball starts to disappear

below the camera’s field of view at just over 30cm from the front of the camera.

With a proper color discrimination algorithm, the pink ball is distinguishable from

the extreme range of 360cm to 0cm where the ball is in physical contact with the

robot long as the overhead lighting does not leave such a large glare on the top of

the reflective ball that it appears white. Also shown in the captured images such

as Figure 4.1 are the 5 bins of the seekcolor algorithm divided by vertical, green

lines. Finally, the time-delay associated with capturing an image from the camera

directly affect the action of the robot. The time delay of the image capture process

is approximately 0.11s. This occurs each time the state object updates so actions are

generated based on 0.11s old image data. Other sensors, such as the IR range finder,

would provide the necessary information about the environment in between camera

image captures, and strategic use of multi-threading would prevent generated actions

from being delayed as well.

4.1.4 IR Range Finder. The IR range finder promised to be simple to

integrate into the system since it uses the I2C protocol. The Blackfin processor

supports I2C communications with dedicated pins for it. The uClinux operating

system also supported it with an I2C kernel driver. After finding the correct method

to physically connect the device to the I2C bus, the device is detected on the bus, and

distance measurements are read through the use of the I2C device driver. It must

be noted that since this is a bus, each individual device must be set with a different

device address so they are distinguishable on the bus. Although the readings are easy

to obtain, they also appear to be deviate 5 to 10 percent from measured distance.

The surface property of the target object may be the source of this error along with

the angle of incidence with the surface.

45

4.1.5 Summary of Hardware Development Results. Of the three hardware

components that were successfully integrated, all three require the HAL to compen-

sate for deficiencies. The PWM motor controls are capable of controlling the motors

but require additional work to synchronize the rotation speed of the motors. This

is a situation where a reactive control architecture can respond quickly to the envi-

ronment and course correct when the robot is not heading straight toward its target.

However, being able to move in a straight line without a clear target to aim for is a

better physical platform. The rotary encoder and the camera both have performance

feature deficiencies. The rotary encoder cannot automatically identify the direction of

rotation of the encoder. Instead the HAL records that information as well as calculate

the odometry from the encoder outputs. The camera is useful for identifying color

targets. Other than capturing the image, all other processing is done in the HAL.

4.2 UBF in Action

The completed Mini-WHEGSTM is a shy and fearful creature. Four test sce-

narios reveal the real-life behavior of this creature and also its physical limitations.

The first and second scenarios are related with the ball left in a fixed location for the

robot to find and stare at. The third scenario involve moving the ball out of sight

whenever the robot sees it. The final scenario keeps the ball within the robot’s field of

vision. Since there is no range finder mounted on the robot, the tests are conducted

in an open, uncluttered area to avoid unnecessary collisions.

4.2.1 Starting with the Ball in Sight. The first scenario starts the Mini-

WHEGSTM ’s autonomous behavior with the ball far away but within its field of

view, similar to Figure 4.2. The chase behavior is expected to immediately turn and

move the robot toward the pink ball. Soon, the flee behavior would slow then stop

the robot at a safe distance away from the pink ball.

46

Figure 4.2: Mini-WHEGSTM Sees the Pink Ball at 60cm

4.2.1.1 Observed Behavior. Upon activation, the robot quickly turns

to point at the pink ball as it accelerates. Closing on the ball, it slows down then

stops to stare at the ball.

4.2.2 Starting with no Ball in Sight. In the second scenario, the autonomous

behavior is activated with no ball in sight. The pink ball is placed several feet away

behind the robot. The search behavior module is expected to dominate immediately

and turn the robot in small tight circles to look for pink pixels that indicate the pink

ball. Upon sighting the ball, chase and flee would bring the robot to a safe distance

from the ball before stopping.

4.2.2.1 Observed Behavior. When the Mini-WHEGSTM awakes and

sees no pink pixels, it sits still for a time since there was no prior maneuver. When

the counter elapses, it randomly chooses to either turn left or right in a slow, tight

circle to reduce the amount of skidding that would result from an in-place skid turn.

The robot soon turns far enough to see the pink ball at the edge of it’s field of vision

47

and increases forward speed as it continues to turn toward the ball. Finally, it comes

to a stop facing the ball.

4.2.3 Keep Away. The third scenario again starts with the pink ball out

of sight. This time, the ball starts to the side of the robot. The search behavior

would turn in tight circles to look for it. If it’s lucky, it finds the ball quickly and

turns to move toward it. This is when the ball is moved across and out of the robot’s

field of vision to the side. The expected behavior is that the chase behavior tracks

the relative angle to the ball as the ball is moved. When the ball is out of sight

again, search continues the last turn command for a time before turning in a random

direction.

4.2.3.1 Observed Behavior. Starting with no pink ball in sight, it sits

still for a time before turning in a tight circle. The ball is soon discovered sitting just

to the side of the starting field of view. Immediately, the ball is moved at ground

level where it is guaranteed to be visible to the robot while it turns to try to keep the

ball in sight. The ball is moved far to the other side of the robot, out of it field of

view. The robot continues to turn toward the last know direction to the ball and soon

sights and homes in on the ball. The test continues with another rapid displacement

of the pink ball. This time the ball is kept moving, out of sight of the robot for a

longer period of time. The robot conducts a search along the last known direction to

the ball until the counter elapses and the robot chooses a new random turn direction.

This time, it turns away to look for the ball in the other direction.

4.2.4 Dance with the Ball. The final test scenario starts with the pink ball

front of the robot where it’s too close for comfort. Figure 4.3 shows what the Mini-

WHEGSTM sees at the start of this scenario. The robot is expected to start turning

toward the ball and backing away until the pink ball is at a safe, comfortable distance

away. The ball would then be moved slowly enough for the robot to turn and track.

The ball is also moved closer to and farther from the robot, which should cause the

48

Figure 4.3: Mini-WHEGSTM Sees the Pink Ball at 30cm

robot to approach and back away as it tries to maintain the comfortable distance

between the robot and the ball.

4.2.4.1 Observed Behavior. The Mini-WHEGSTM immediately backs

away as it turns to center the ball in its view. Moving the ball forward to keep it

close to the front of the robot forces it to continue to back away at speed. When the

ball is suddenly moved farther away but kept in the robot’s field of view, the robot

reverses course and leap forward to stay with the ball while turning to keep the ball

centered. Waving the ball around in front of it quickly only cause the robot to move

forward and back if the waving is not drastic enough. Large movements of the ball

cause the robot to turn to track it as it continues to move forward and back since the

pink ball also appear to grow and shrink in its eye.

4.2.5 Summary of Behavior Tests. Four test scenarios demonstrated the

functionality of the UBF as well as the microcontroller and the Mini-WHEGSTM

robot. The first two scenarios showed the behaviors are stable in situations where the

49

environment isn’t constantly changing. The remaining two clearly show its ability to

operate in a rapidly changing environment.

4.3 Summary

Built from a set of sensors, motors, and a low lying frame, the Mini-WHEGSTM

takes the form of a crawling critter. After integration under a hardware abstraction

layer, and controlled by the Unified Behavior Framework, the Mini-WHEGSTM also

act like a living creature, one who’s life revolves around a pink ball. It searches all

around for the pink ball when it does not see it, it is drawn to the ball when it does

see it, and yet, it is afraid to get too close to it. By moving the ball around within

its field of view, the robot can be guided to any position in its environment without

using direct means to give it commands.

50

V. Conclusions

This thesis demonstrates the feasibility of a flexible, autonomous control archi-

tecture on an embedded system. The Mini-WHEGSTM , designed to mechan-

ically mimic the cockroach, now behaves like a shy, fearful cockroach. This chapter

summarizes the results of the research, discusses possible future work, and ends with

additional remarks about the development of the Unified Behavior Framework (UBF).

5.1 Research Conclusions

The objectives of this research is to adapt the Unified Behavior Framework to

an embedded platform, and make the Mini-WHEGSTM fully autonomous in a task

of locating and following a target. These goals are accomplished using a flavor of

Linux designed for microcontrollers, a microcontroller with enough IO resources to

interact with the Mini-WHEGSTM hardware components, and linking the UBF to

the hardware abstraction layer (HAL) designed for the Mini-WHEGSTM .

The availability of Linux on microcontrollers greatly simplified the development

process of UBF for an embedded platform. Reviewing the existing UBF designed

on a desktop and modifying it with respect to the limited resources of an embedded

platform is sufficient to create UBF for embedded platforms. The key differences to

watch for is the lack of a hardware memory manager, and the general shortage of

operating memory. The former calls for limiting if not eliminating the use of dynamic

memory allocation, and the latter demands efficient use of memory.

The integration of hardware components with Linux proved to be more complex.

While Linux eased the transition from a desktop computer, the operating system also

require drivers before a user process like UBF can access the hardware components.

Once the hardware components can be accesses, the full set of sensors and motors

must be integrated into a hardware abstraction layer. The HAL keeps the details of

interacting with the hardware platform out of the rest of the UBF. It also prevents

the UBF from being locked to a specific hardware platform.

51

All details particular to the hardware platform are contained within the HAL.

Specifics such as the dimensions of the robot is required to compute the motion model.

Another important detail is the motor control signals required to drive the motors.

Not all motors and speed controllers are equal but they’re all equal through the HAL.

5.2 Future Work

The UBF showed the importance of standardized interfaces between behavior

modules. While the behavior modules receive sensor input and effect physical actions

through the state and action objects, there is no standardized interface between these

two objects and the underlying hardware. The HAL bridges this gap in an attempt

to keep this version of the UBF from being tied to this Mini-WHEGSTM . Further

development of the HAL, perhaps integrating capabilities and features from similar

solutions, may allow the embedded UBF to be fully compatible with the “full size”

version of the UBF.

Another area for continued development is the I2C bus. It has the most po-

tential for integrating sensors that only require moderate bandwidth. The bus allows

many devices to be connected regardless of the number of available IO ports and phys-

ical pins. Although there is a restriction on power usage and space on and around

the robot for mounting sensors, managing a single data bus is simpler than managing

a array of different IO ports, each with their own protocol.

The OV9655 has a field of view of approximately 35 degrees. A different camera

or perhaps the addition of a lens so that the field of view is much shorter and wider

may produce better results. This robot is designed more for enclosed spaces where

peripheral vision is more useful than long range sight. A second camera may also

give interesting enhancement to the robots capabilities. With two cameras set to

maximize the combined field of view, a rodent becomes an appropriate model for

behavioral development.

52

5.3 Final Remarks

Low cost, embedded, autonomous systems were once words that did not belong

near each other. Either low cost systems are not powerful enough or the autonomous

system is too large to be considered “embedded”. With processing power increasing by

leaps and bounds, low cost embedded platforms are practical for autonomous systems.

Such powerful embedded systems are enough for many simple desktop applications.

With an eye for optimization, even something as small as a Mini-WHEGSTM can do

everything a much larger robot can do. Certainly, UBF behavior modules designed

for larger robots can work on the Mini-WHEGSTM with little or no change.

53

Bibliography

1. “The I2C-bus specification version 2.1”, January 2000.

2. “ADSP − BF537BlackfinProcessorHardwareReference”, December 2005.

3. Arkin, Ronold C. Survivable Robotics Systems: Reactive and Homeostatic Control,
135–154. Prentice-Hall, 1993.

4. Baillie, Jean-Christophe and Francois Serra. “Aibo programming using OPEN-
R SDK Tutorial”. URL www.ensta.fr/ baillie/tutorial OPENRENSTA −

1.0.pdf .

5. Braitenberg, Valentino. Vehicles: Experiments in Synthetic Psychology. MIT
Press, 1984.

6. Brooks, Rodney A. “A Robust Layered Control System for a Mobile Robot”.
IEEE Journal of Robotics and Automation, 2(1):14–23, March 1986.

7. Brooks, Rodney A. “A Robot that Walks; Emergent Behaviors from a Carefully
Evolved Network”, February 1989. MIT AI Memo 1091.

8. Desai, Rajiv S., Charles J. Rosenberg, and Joseph L. Jones. “Kaa: an autonomous
serpentine robot utilizes behavior control”. Proceedings of the 1995 International
Conference on Intelligent Robots and Systems, 250–255. 1995.

9. Fujita, Masahiro and Koji Kageyama. “An open architecture for robot enter-
tainment”. AGENTS ’97: Proceedings of the first international conference on
Autonomous agents, 435–442. ACM, New York, NY, USA, 1997.

10. Gat, Erann. Three-Layer Architectures, 195–210. AAAI Press, 1998.

11. Harkins, Richard, Jason Ward, Ravi Vaidyanathan, Alexander S. Boxerbaum,
and Roger D. Quinn. “Design of an Autonomous Amphibious Robot for Surf
Zone Operations: Part II - Hardware, Control Implementation and Simulation”.
Proceedings of the 2005 IEEE/ASME International Conference on Advanced In-
telligent Mechatronics, 1465–1470. 2005.

12. Konolige, K., K. Myers, E. Ruspini, and A. Saffiotti. “The Saphira Architecture:
A Design for Autonomy”. Journal of Experimental and Theoretical Artificial
Intelligence, (9):215–235, 1997.

13. Lewinger, W.A., M.S. Watson, and R.D. Quinn. “Obstacle Avoidance Behavior
for a Biologically-inspired Mobile Robot Using Binaural Ultrasonic Sensor”. Pro-
ceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2006.

14. McCullough, David. “uCLinux for Linux programmers”. Linux J., Volume
2004(Issue 123), 2004.

54

15. Morrey, Jeremy, Bram Lambrecht, Andrew Horchler, Roy E. Ritzmann, and
Roger D. Quinn. “Highly mobile and robust small quadruped robots”. Inter-
national Conference on Intelligent Robots and Systems, 82–87. 2003.

16. Murphy, Robin R. Introduction to AI Robotics. MIT Press, 2000.

17. Nilsson, Nils J. “Shakey the Robot”. Technical Note 323, SRI International.

18. Pashenkov, Nikita and Ryuichi Iwamasa. “One-Chip Solution to Intelligent Robot
Control: Implementing Hexapod Subsumption Architecture Using a Contem-
porary Microprocessor”. International Journal of Advanced Robotics Systems,
1(2):93–98, June 2004.

19. Payton, David W. Internalized Plans: A Representation for Action Resources,
89–103. MIT Press, 1990.

20. Porta, Josep M. and Enric Celaya. “Force-Based Control of a Six-
Legged Robot on an Abrupt Terrain”, October 2000. URL http :
//www.ee.pdx.edu/ mperkows/MLLAB/Giant Hexapod/transm3/icar95.pdf .

21. Russel, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

22. Saranli, Uluc, Martin Buehler, and Daniel E. Koditschek. “RHex: A Simple
and Highly Mobile Hexapod Robot”. International Journal of Robotics Research,
20(7):616–631, July 2001.

23. Thrun, Sebastian, Wolfram Burgard, and Fox Dieter. Probabilistic Robotics. MIT
Press, 2005.

24. Ward, Jason. Design of a Prototype Autonomous Amphibious WHEGS Robot for
Surf-Zone Operations. Master’s thesis, Naval Postgraduate School, June 2005.

25. Woolley, Brian and Gilbert Peterson. “Unified Behavior Framework for Re-
active Robot Control”. Journal of Intelligent and Robotic Systems. URL
http://dx.doi.org/10.1007/s10846-008-9299-1.

26. Xiao, Jizhong, Jun Xiao, Ning Xi, Hans Dulimarta, R. L. Tummala, Mark Mi-
nor, and R. Mukherjee. “Modeling, control, and motion planning of a climbing
microrobot”. Integrated Computer-Aided Engineering, 11(4):289–307, December
2004.

55

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

01–03–2009 Master’s Thesis May 2007 — Mar 2009

Unified Behavior Framework
in an Embedded Robot Controller

09–219

Lin, Stephen S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433–7765

AFIT/GCE/ENG/09-04

AFRL, Sensors Directorate, Reference Systems
Attn: Jacob Campbell
Bldg 620, Room 3AJ39
2241 Avionics Circle
WPAFB, OH 45433-7333
DSN: 785–6127 x4154 Email: Jacob.Campbell@wpafb.af.mi

AFRL/RYRN

Approval for public release; distribution is unlimited.

Recent technological advances produce small, inexpensive, embedded hardware platforms that are powerful enough to
match robots from just a few years ago. The Unified Behavior Framework is a flexible, responsive control architecture
that has not been applied on embedded systems in robots. This thesis presents a development of the Unified Behavior

Framework on the Mini-WHEGSTM , a biologically inspired, embedded robotic platform, which is a small robot that
utilize wheel-legs to emulate cockroach walking patterns. Wheel-legs combine wheels and legs for high mobility without
the complex control system required for legs. Also included is a color camera and a rotary encoder, enabling the

Mini-WHEGSTM to identify color objects and track its position. A hardware abstraction layer designed for the robot
in this configuration decouples the control system from the hardware and and provide the interface between the software
and the hardware. The result is a highly mobile embedded robot system capable of exchanging behavior modules with
much larger robots while requiring little or no change to the modules.

robotics, artificial intelligence, embedded, microcontroller, biologically inspired

U U U UU 67

Dr. Gilbert Peterson

(937) 255–3636 x4281; Gilbert.Peterson afit.edu

	1.pdf
	signature.pdf
	2.pdf

